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The method of the joint probability distribution function is applied to the case in

which the positions of the anomalous scatterers are fully or partially known. The

mathematical technique is able to handle errors both in the model structure of

the located anomalous scatterers and in measurements. A criterion for ranking

the more accurate phase estimates is given.

1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

la: number of located anomalous scatterers in the unit cell.

nla � N ÿ la: nla includes non-located anomalous scatterers

and non-anomalous scatterers.

fj � f 0
j ��fj � if 00j � f 0j � if 00j : scattering factor of the jth atom.

f 0 is its real, f 00 is its imaginary part. The thermal factor is

included.

F� � jF�j exp�i'�� � Fh �
PN
j�1

fj exp�2�ihrj�:

F�la � jF�la j exp�i'�la� �
P
la

fj exp�2�ihrj�:

Fÿ � jFÿj exp�i'ÿ� � Fÿh �
PN
j�1

fj exp�ÿ2�ihrj�:

Fÿla � jFÿla j exp�i'ÿla� �
P
la

fj exp�ÿ2�ihrj�:

jF j exp�i'�: structure factor calculated by taking into account

non-anomalous scattering (all the atoms in the unit cell

included).

�la;�nla;�N �
P �f 0 2j � f 00 2j �, where the summation is

extended to la, nla and N atoms.

�ano � jF�j ÿ jFÿj:

2. Introduction

The method of joint probability distribution functions has

been already applied to the OAS (one-wavelength anomalous-

scattering) case. The joint probability distributions

P�jF�j; jFÿj; '�; 'ÿ� �1a�
and

P�jF�h1
j; jF�h2

j; jF�h3
j; jFÿh1

j; jFÿh2
j; jFÿh3

j; '�h1
; . . . ; 'ÿh3

�
with h1 � h2 � h3 � 0 �1b�

were independently obtained by Hauptman (1982) and by

Giacovazzo (1983) in the case in which no prior information is

available on the anomalous-scatterer positions. The ap-

proaches aimed at identifying: (i) from (1a) the conditional

probability distribution P��'jjF�j; jFÿj� of �' � '� � 'ÿ
given jF�j and jFÿj; (ii) from (1b) the conditional triplet phase

distribution

P��jjF�h1
j; jF�h2

j; jF�h3
j; jFÿh1

j; jFÿh2
j; jFÿh3

j�:
This last distribution should help to estimate phase values

without any prior knowledge of the atomic positions of the

anomalous scatterers.

In this paper, we intend to apply the joint probability

distribution technique to the OAS case when the positions of

all or a part of the anomalous scatterers have been found via

one of the current methods (see Blow & Rossmann, 1961;

North, 1965; Mathews, 1966; see also Giacovazzo, 1998, for a

general description of them). Then the joint distributions

P�F�;FÿjF�la ;Fÿla � �2�
will be calculated, from which

P�'�jjF�j; jFÿj; jF�la j; jFÿla j�
and

P�'ÿjjF�j; jFÿj; jF�la j; jFÿla j�
will be derived. From them, the most probable value of ' is

easily derived by geometrical considerations.

While (1a) and (1b) were derived without taking into

account errors in measurements, the study of (2) cannot be

made without using them. Accordingly, the mathematical



approach we describe here involves errors both in the model

structure of located anomalous scatterers and in measure-

ments.

To evaluate the potential of the present approach, a

comparison will be made between our conclusive formulas and

the corresponding expressions obtained by previous authors.

We notice that previous probabilistic approaches consider

OAS as a special SIR (single isomorphous replacement) case.

I.e. the classical Blow & Crick (1959) expression, integrated by

Terwilliger & Eisenberg (1987) contributions and originally

derived for SIR±MIR cases, has been extended by analogy to

the OAS case. The result is

P�'� � exp�ÿ"�'�=�2E2��; �3�
where

" � j�obs
ano ÿ�calc

ano j;
E � h"2i � 4�2��ano�;

�2��ano� takes measurement errors into account.

3. The joint probability distribution P�F�;FÿjF�la ;Fÿla �P�F�;FÿjF�la ;Fÿla �
In our probabilistic approach, the positions of the non-located

anomalous scatterers and the positions of the non-anomalous

scatterers will be the primitive random variables. We will

assume that

F� � F�la � F�nla � �� � F�la � F�q ; �4�
where: (a) F�nla is the structure factor corresponding to the

non-located anomalous scatterers and to the non-anomalous

scatterers; (b) �� � j��j exp�i��� represents the cumulative

errors arising from different sources (i.e. the structural model

constituted by the located anomalous scatterers and errors in

measurements); (c) F�q � F�nla � ��.

Equivalently,

Fÿ � Fÿla � Fÿnla � �ÿ � Fÿla � Fÿq ; �5�
where Fÿq � Fÿnla � �ÿ.

If all the anomalous scatterers are located, F�nla � �Fÿnla��,
where * indicates the complex conjugate. We make some

reasonable assumptions:

(a) F�la , F�nla, �� are uncorrelated with each other;

(b) the same assumption holds for Fÿla , Fÿnla, �ÿ;

(c) h��i � h�ÿi � 0;

(d) h���ÿi � 0. This implies that errors on F� and Fÿ are

uncorrelated.

Then,

hjF�j2i � jF�la j2 ��nla � hj��� j2i
hjFÿj2i � jFÿla j2 ��nla � hj�ÿ� j2i:

When part of the structure is known, numerical reasons

(Camalli et al., 1985) suggest that it is more useful to pseudo-

normalize the structure factor with respect to the unknown

part of the crystal structure. This is in agreement with the fact

that atomic coordinates of the located atoms no longer belong

to the set of primitive random variables. If structure factors

are normalized with respect to the full chemical content of the

crystal structure, the ®nal formulas will not change but they

will assume a more complicated mathematical form.

Accordingly, on supposing that part or all of the anomalous

scatterers are located, we ®nd that

R exp�i'�� � �A� � iB�� � F�=�1=2
nla ;

G exp�i'ÿ� � �Aÿ � iBÿ� � Fÿ=�1=2
nla ;

where R and G are the pseudo-normalized moduli of |F�| and

|Fÿ|, respectively, and

A� � PN
j�1

� f 0j cos 2�hrj ÿ f 00j sin 2�hrj� � j��j cos ��
" #�

�1=2
nla

B� � PN
j�1

� f 0j sin 2�hrj � f 00j cos 2�hrj� � j��j sin ��
" #�

�1=2
nla

Aÿ � PN
j�1

� f 0j cos 2�hrj � f 00j sin 2�hrj� � j�ÿj cos �ÿ
" #�

�1=2
nla

Bÿ � PN
j�1

�ÿf 0j sin 2�hrj � f 00j cos 2�hrj� � j�ÿj sin �ÿ
" #�

�1=2
nla :

Equivalently,

Rla exp�i'�la� � �A�la � iB�la� � F�la=�
1=2
nla

Gla exp�i'ÿla� � �Aÿla � iBÿla� � Fÿla=�
1=2
nla

Rq exp�i'�q � � �A�q � iB�q � � F�q =�
1=2
nla

Gq exp�i'ÿq � � �Aÿq � iBÿq � � Fÿq =�
1=2
nla ;

where

A�q � �<�F�nla� � j��j cos ���=�1=2
nla

B�q � �=�F�nla� � j��j sin ���=�1=2
nla

Aÿq � �<�Fÿnla� � j�ÿj cos �ÿ�=�1=2
nla

Bÿq � �=�Fÿnla� � j�ÿj sin �ÿ�=�1=2
nla :

<�. . .� and =�. . .� stand for real and imaginary parts, respec-

tively.

Under the above assumptions, the characteristic function

C�u�; uÿ; v�; vÿ� of the distribution

P�A�;Aÿ;B�;BÿjA�la;Aÿla;B�la;Bÿla�
[in short P�A�;Aÿ;B�;Bÿ�] may be calculated.

We have

C�u�; uÿ; v�; vÿ�
� hexp i�u�A� � uÿAÿ � v�B� � vÿBÿ�i
� exp i�u�A�la � uÿAÿla � v�B�la � vÿBÿla�
� hexp i�u�A�q � uÿAÿq � v�B�q � vÿBÿq �i; �6�

where u�, uÿ, v�, vÿ are carrying variables associated with A�,

Aÿ, B�, Bÿ, respectively. Expanding the right-hand side of (6)

in cumulants gives
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C�u�; uÿ; v�; vÿ�
� hexp i�u�A�la � uÿAÿla � v�B�la � vÿBÿla�i
� expfÿ�e��u�2 � v�2� � eÿ�uÿ2 � vÿ2��=4

ÿ 1
2 c01�u�uÿ ÿ v�vÿ� ÿ 1

2 c02�u�vÿ � uÿv��g;

where

e� � �1� ��2
� �; eÿ � �1� �ÿ2

� �
��

2

� � hj��� j2i=�nla; �ÿ
2

� � hj�ÿ� j2i=�nla

c01 �
P
nla

� f 0 2j ÿ f 00 2j �
�P

nla

� f 0 2j � f 00 2j �

c02 �
�

2
P
nla

f 0j f 00j

��P
nla

� f 0 2j � f 00 2j �:

Then,

P�A�;Aÿ;B�;Bÿ�

� �2��ÿ4
R�1
ÿ1

. . .
R�1
ÿ1

expfÿi�u1�A� ÿ A�la�

� u2�Aÿ ÿ Aÿla� � v1�B� ÿ B�la�
� v2�Bÿ ÿ Bÿla�� ÿ �e��u�2 � v�2�
� eÿ�uÿ2 � vÿ2��=4ÿ 1

2 c01�u�uÿ ÿ v�vÿ�
ÿ 1

2 c02�u�vÿ � uÿv��g du� . . . dvÿ:

De®ne

u� � �2=e��1=2u�0;

v� � �2=e��1=2
v�0;

uÿ � �2=eÿ�1=2uÿ0

vÿ � �2=eÿ�1=2vÿ0

and replace c01 and c02 by

c1 � c01�e�eÿ�ÿ1=2; c2 � c02�e�eÿ�ÿ1=2;

respectively. Then,

P�A�;Aÿ;B�;Bÿ� � �2��ÿ422�e�eÿ�ÿ1

� R�1
ÿ1

. . .
R�1
ÿ1

exp�ÿiTU0 ÿ 1
2 U
0
kU0� dU

0

� �ÿ2�e�eÿ�ÿ1�ÿ1=2 exp�ÿ 1
2 Tkÿ1T�;

where

U
0 � �u�0; uÿ0; v�0; vÿ0�

T � f�A� ÿ A�la��2=e��1=2; �Aÿ ÿ Aÿla��2=eÿ�1=2;

�B� ÿ B�la��2=e��1=2; �Bÿ ÿ Bÿla��2=eÿ�1=2g

k �

1 c1 0 c2

c1 1 c2 0

0 c2 1 ÿc1

c2 0 ÿc1 1

���������

���������:
In a more explicit form,

P�A�;Aÿ;B�;Bÿ�

� �ÿ2�e�eÿ�ÿ1cÿ1 exp

�
ÿ 1

c

��A� ÿ A�la�2 � �B� ÿ B�la�2
e�

� �A
ÿ ÿ Aÿla�2 � �Bÿ ÿ Bÿla�2

eÿ

�
� 2

c1

c

��A� ÿ A�la��Aÿ ÿ Aÿla� ÿ �B� ÿ B�la��Bÿ ÿ Bÿla��
�e�eÿ�1=2

� 2
c2

c

��A� ÿ A�la��Bÿ ÿ Bÿla� ÿ �Aÿ ÿ Aÿla��B� ÿ B�la��
�e�eÿ�1=2

�
;

�7�
where c2 � det k � �1ÿ �c2

1 � c2
2��2.

The change of variables

A� � R cos '�;

A�la � Rla cos '�la;

Aÿ � G cos 'ÿla;

Aÿla � Gla cos 'ÿla;

B� � R sin '�

B�la � Rla sin '�la
Bÿ � G sin 'ÿ

Bÿla � Gla sin 'ÿla

changes (7) into

P�R;G; '�; 'ÿ�

� RG

�2e�eÿc
exp

�
ÿ 1

c

�
R2 � R2

la ÿ 2RRla cos�'� ÿ '�la�
e�

�G2 �G2
la ÿ 2GGla cos�'ÿ ÿ 'ÿla�

eÿ

�
� 2c3

c

1

�e�eÿ�1=2

� �RG cos�'� � 'ÿ ÿ 
� � RlaGla cos�'�la � 'ÿla ÿ 
�

ÿ RGla cos�'� � 'ÿla ÿ 
� ÿ RlaG cos�'ÿ � '�la ÿ 
��
�
;

where

c2
3 � c2

1 � c2
2; 
 � tanÿ1�c2=c1�:

Again, for shortness, P�R;G; '�; 'ÿ� stands for

P�R;G; '�; 'ÿjRla;Gla; '
�
la; '

ÿ
la�.

Let us de®ne

�E�nla�calc � �E� ÿ E�la�; �Eÿnla�calc � �Eÿ ÿ Eÿla�:
Then,

�Rnla�2calc � �R2 � R2
la ÿ 2RRla cos�'� ÿ '�la��

�Gnla�2calc � �G2 �G2
la ÿ 2GGla cos�'ÿ ÿ 'ÿla��

and (6) may be written in the simpler form

P�R;G; '�; 'ÿ�

� RG

�2e�eÿc
exp

�
ÿ 1

c

��R2
nla�calc

e�
� �G

2
nla�calc

eÿ

�
� 2c3

c

1

�e�eÿ�1=2
�RG cos�'� � 'ÿ ÿ 
�

� RlaGla cos�'�la � 'ÿla ÿ 
� ÿ RGla cos�'� � 'ÿla ÿ 
�

ÿ RlaG cos�'ÿ � '�la ÿ 
��
�
: �8�

The distribution (8) is the main result of this paper, from

which marginal and conditional distributions will be derived.



4. The conditional distribution of the phases

We ®rst calculate the marginal probability distribution

P�'�;R;G� � 2RG

�e�eÿc
I0�Z'�� exp

�
ÿ 1

c

��R2
nla�calc

e�
�G2 �G2

la

eÿ

ÿ f�2c3RlaGla cos�'�la � 'ÿla ÿ 
�

ÿ 2c3RGla cos�'� � 'ÿla ÿ 
���e�eÿ�ÿ1=2g
��
;

�9�
where I0 is the modi®ed Bessel function of order zero and

Z'� �
2G

c�eÿ�1=2

�
c2

3

�R2
nla�calc

e�
�G2

la

eÿ
� 2c3Gla

� �R cos�'� � 'ÿla ÿ 
� ÿ Rla cos�'�la � 'ÿla ÿ 
��
�e�eÿ�1=2

�1=2

:

The distribution (9) may be approximated as follows. Since

c� 1, Z'� is large for the cases of interest. Then, I0�Z'�� may

be expanded (Abramowitz & Stegun, 1972) according to

I0�Z'�� � exp�jZ'�j�=�2�jZ'�j�1=2: �10�
Standard techniques will then lead to the conditional distri-

bution

P�'�jR;G� � �G=Z'��1=2 exp�ÿ�1=c��G2=eÿ �G2
calc ÿ cZ'���;

�11�
where

G2
calc � �e��ÿ1�R2

nla�calc � �eÿ�ÿ1G2
la � 2c3�e�eÿ�ÿ1=2

�Gla�R cos�'� � 'ÿla ÿ 
� ÿ Rla cos�'�la � 'ÿla ÿ 
��:
�12�

The same procedure leads to the distribution of 'ÿ:

P�'ÿjR;G� � �R=Z'ÿ�1=2 exp�ÿ�1=c��R2=e� � R2
calc ÿ cZ'ÿ��;

�13�
where

R2
calc � �eÿ�ÿ1�G2

nla�calc � �e��ÿ1R2
la � 2c3�e�eÿ�ÿ1=2Rla

� �G cos�'ÿ � '�la ÿ 
� ÿGla cos�'�la � 'ÿla ÿ 
��;
�14�

Z'ÿ �
2R

c�e��1=2

�
c2

3

�G2
nla�calc

�eÿ� �
R2

la

�e�� � 2c3Rla

� �G cos�'�la � 'ÿ ÿ 
� ÿGla cos�'�la � 'ÿla ÿ 
��
�e�eÿ�1=2

�1=2

:

�15�
The formulas obtained so far are rather complicated: a

simpli®ed case to better understand them is described in

Appendix A.

Formulas (11) and (13) have no counterpart in Hauptman

(1982) and Giacovazzo (1983) approaches (indeed, in the

absence of prior information on the anomalous-scatterer

positions, only '� � 'ÿ may be estimated, not the single

values of '� and 'ÿ). However, (8) exactly coincides with the

distribution (1a) as obtained by the above authors, when both

the number of located anomalous scatterers and the

measurement errors tend to vanish.

5. The centrosymmetric case

Since E�la � Eÿla and E� � Eÿ, the joint probability to study is

P�R; '�jE�la�. Its characteristic function is

C�u�; v�� � exp i�u�A�la � v�B�la� exp�ÿe��u�2 � v�2�=4�;
from which

P�R; '�� � ��e��ÿ1R expfÿ�1=e���R2 � R2
la

ÿ 2RRla cos�'� ÿ '�la��g: �16�
From (16), the following marginal distributions are obtained:

P�R� � 2R

e�
exp

�
ÿ 1

e�
�R2 � R2

la�
�

I0

�
2RRla

e�

�
; �17�

P�'�jR� �
�

2�I0

�
2RRla

e�

��ÿ1

exp

�
2RRla

e�
cos�'� ÿ '�la�

�
:

�18�
According to (18), the most probable phase for '� is always

'�la , with reliability parameter equal to 2RRla=e�. Since Rla is in

general a small number, the phase prediction is generally

weak. Good predictions will be obtained when the scattering

power of located anomalous-scattering atoms is not a negli-

gible fraction of the unit-cell scattering power.

6. Applications

The distributions (11) and (13) have been plotted in Figs. 1±3

for some speci®c cases by using the diffraction data of cyanase

(Walsh et al., 2001), a homodecamer that crystallizes in P1 with

four selenomethionines per monomer (40 in the unit cell),

a � 76:3, b � 81:0, c � 82:3 AÊ , � � 70:30, � � 72:20,


 � 66:40�. Multiwavelength data were collected up to 1.65 AÊ

resolution: in our tests, we will only use data at � � 0:9465 AÊ

for which f 0 � ÿ2:618, f 00 � 3:578.

In each ®gure, (11) is the full line, (13) the broken line. The

bimodal nature of the distribution is clearly observable in
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Distributions (11) (full line) and (13) (broken line) for the re¯ection
210201: R � 1:26, G � 1:24, Rla � 0:32, Gla � 0:32, '�la � 267, 'ÿla � 108,
'best � 285.
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Figs. 1 and 2; occasionally (see Fig. 3) they are unimodal. The

best estimates of '� and 'ÿ (say '�best and 'ÿbest) are obtained

by calculating the centroids of the probability distributions

(11) and (13), respectively (Blow & Crick, 1959). I.e. '�best is

obtained by calculating

x� � R P�'�jR;G� cos '� d'�;

y� � R P�'�jR;G� sin '� d'�;

'�best � tanÿ1�y�=x��:
The classical ®gure of merit for the phase estimate, widely

used in protein crystallography, is given by

m� � �x�2 � y�2�:
Once '�best is available, ' may be estimated by trivial geome-

trical considerations (the vector F is obtained by subtracting

the anomalous scattering from F�best; see notation in x1). The

same procedure may be applied to derive the values of 'ÿbest

and mÿ, from which another estimate of 'may be obtained. In

the absence of measurement errors, the two estimates of '
should be perfectly coincident: in practice, they may differ by a

few degrees and we assume their average (say 'best) as the best

estimate of '.

In order to check the potential of our approach, the

procedure has been ®rst applied to calculated (without error)

data: we assumed e� � eÿ � 1� �0:01jEcalcj�2 to avoid

singularities in distributions (11) and (13). The results are

shown in Table 1, where 'best estimates are ranked versus m.

We notice: (a) the ®gure of merit m is a good criterion to select

the most reliable estimates; (b) errors in the estimates are

unavoidable owing to the bimodal nature of the distributions.

The corresponding results for observed data are shown in

Table 2: the values of e� and eÿ used in the calculations arise

now from ��2
� and �ÿ2

� deriving from measurement counting

statistics. We notice: (a) m is still a good criterion to select the

most reliable phases; (b) errors in the phase estimates are now

larger owing to errors in measurements.

Results in Table 2 can help to address the question of the

signi®cances of our one-wavelength estimates. Lower values of

f 00 would depress the average value of the signal jRÿGj and

therefore would reduce the number of re¯ections with high m

value. Larger experimental errors (i.e. larger e� and eÿ values)

would depress the reliability of (11) and (13): accordingly, in

Table 2, the number of re¯ections with m > 0.9 is lower than

the corresponding number in Table 1. Underestimation of e�

and eÿ can in¯uence the reliability of the estimates: i.e., in

Table 2, 2113 re¯ections have m > 0.9 but their average phase

error is higher than for the corresponding 12869 re¯ections in

Table 1. A more realistic scheme for the error (including the

error in the structural model of the anomalous scatterers)

should restrict m to a lower range and establish a more

realistic correspondence between m and �'. Updating the

error scheme does not require any change in our mathematical

approach.

7. Conclusions

A new probabilistic approach for handling the OAS case is

described, aiming at phasing structure factors under the

assumption that anomalous-scatterer positions are fully or

partially known. The method uses the technique of the joint

probability distribution functions and provides conclusive

formulas that, applied to a practical case, provides ef®cient

tools for phasing re¯ections. Distinctive features of our

approach are the following:

(a) The formulas are not obtained by analogy with the SIR

case, but rigorously derived for the OAS case.

(b) The formulas do not have the usual exponential form.

Figure 2
Distributions (11) (full line) and (13) (broken line) for the re¯ection
1007011: R � 0:47, G � 0:52, Rla � 0:24, Gla � 0:24, '�la � 48, 'ÿla � 326,
'best � 318.

Figure 3
Distributions (11) (full line) and (13) (broken line) for the re¯ection
190106: R � 2:96, G � 2:99, Rla � 0:05, Gla � 0:05, '�la � 81, 'ÿla � 294,
'best � 48.

Table 1
Cyanase calculated data.

Phase estimates are ranked as a function of m. Numb is the number of
re¯ections with ®gure of merit m > Sog, �' � hj'true ÿ 'bestji is the
corresponding average phase error (the weighted average phase error is in
parentheses).

Sog Numb �' (�)

0.1 62370 38 (32)
0.2 60369 37 (32)
0.3 56777 35 (31)
0.4 52325 33 (30)
0.5 46965 30 (28)
0.6 41016 27 (26)
0.7 33700 24 (23)
0.8 24644 20 (19)
0.9 12869 15 (15)



(c) A change in the error magnitude both in¯uences the

phase reliability and modi®es the phase estimates. This

property is not shared by distributions like (3), which assigns

different reliabilities for different error rates, but always

provides the same estimate. The evaluation of the practical

consequences of such a feature requires additional study.

(d) The formulas are still valid when some non-anomalous

in addition to the anomalous atoms are localized. It is suf®-

cient to understand the symbol `la' speci®ed in x1 as `located

atoms', instead of `located anomalous scatterers'. As a

consequence, `nla' will represent the `non-located atoms'

instead of the original `non-located anomalous scatterers'.

This feature suggests the usefulness of a cyclic procedure

capable of using as prior the structural information available

at a given step of the phasing process.

(e) The ®nal formulas may be easily generalized for appli-

cation to the MAD case. This is the next important step of our

work.

APPENDIX A
Let us suppose that all the anomalous scatterers have been

correctly located: equivalently, assume that the errors come

out mainly from measurements. Then,

c2 � 0; c1 � c3 � �e�eÿ�ÿ1=2

c � 1ÿ �e�eÿ�ÿ1 � e=�e�eÿ�; 
 � 0

e � �e�eÿ ÿ 1�:
Since (< stands for `real part of'),

<��E�nla�calc�Eÿnla�calc�
� �RG cos�'� � 'ÿ� � RlaGla cos�'�la � 'ÿla�
ÿRGla cos�'� � 'ÿla� ÿ RlaG cos�'�la � 'ÿ��;

the joint probability distribution (8) may be written in the

simpler form

P�R;G; '�; 'ÿ�
� �RG=�2e� exp

ÿÿ �1=e�feÿ�Rnla�2calc � e��Gnla�2calc

ÿ 2<��E�nla�calc�Eÿnla�calc�g
�
: �19�

Then equations (11)±(15) may be replaced by

P�'�jR;G� � �G=Z'��1=2 expfÿ��e�eÿ�=e��G2=eÿ �G2
calc

ÿ �e=e�eÿ�Z'� �g �20�
P�'ÿjR;G� � �R=Z'ÿ�1=2 expfÿ��e�eÿ�=e��R2=e�

�R2
calc ÿ �e=e�eÿ�Z'ÿ �g �21�

G2
calc � �e��ÿ1�R2

nla�calc � �eÿ�ÿ1G2
la � 2�e�eÿ�ÿ1Gla

� �R cos�'� � 'ÿla� ÿ Rla cos�'�la � 'ÿla�� �22�
R2

calc � �eÿ�ÿ1�G2
nla�calc � �e��ÿ1R2

la � 2�e�eÿ�ÿ1Rla

� �R cos�'ÿ � '�la� ÿGla cos�'�la � 'ÿla�� �23�
Z'� � �2G=e�e�f�R2

nla�calc=�e��2 �G2
la � 2�Gla=e��

� �R cos�'� � 'ÿla� ÿ Rla cos�'�la � 'ÿla��g1=2

�24�
Z'ÿ � �2R=e�eÿf�G2

nla�calc=�eÿ�2 � R2
la � 2�Rla=eÿ�

� �G cos�'ÿ � '�la�� ÿGla cos�'�la � 'ÿla��g1=2:

�25�
Let us now ®nd some simpli®ed forms of (20) and (21). We

note that the exponential term in (20) and (21) varies

more rapidly than �G=Z'��1=2 or �R=Z'ÿ�1=2. Accordingly, the

expected value of '� will mostly depend on it and conse-

quently �G=Z'��1=2 and �R=Z'ÿ�1=2 may be replaced by unity.

Furthermore, if e� and eÿ are not too large we can replace (20)

and (21) by the simpler expressions

P�'�jR;G� � exp�ÿ�e�=e��GÿGcalc�2� �26�
and

P�'ÿjR;G� � exp�ÿ�eÿ=e��Rÿ Rcalc�2�; �27�
where

G2
calc � �R2

nla�calc �G2
la � 2Gla�R cos�'� � 'ÿla�

ÿ Rla cos�'�la � 'ÿla�� �28�
R2

calc � �G2
nla�calc � R2

la � 2Rla�R cos�'ÿ � '�la�
ÿGla cos�'�la � 'ÿla��: �29�

Even if expressed in a concise form, the above expressions are

of not immediate understanding.

A further simpli®cation allows a clearer insight into (19).

Distribution (19) reduces to (30) if e� and eÿ are suf®ciently

small and close to each other:

P�R;G; '�; 'ÿ� � �RG=�e� exp�ÿ�1=e�
� j�E� ÿ E�la� ÿ �Eÿ ÿ Eÿla�j2�: �30�

We note:

(a) If only E�la and R are known then (30) reduces to

P�R; '�� and the maximum of the probability distributions is

attained when jE� ÿ E�laj is a minimum. This occurs

when '� � '�la (in this case, E� and E�la are collinear

vectors).

(b) If only Eÿla and G are known, the maximum value of

P�G; 'ÿ� is attained when 'ÿ � 'ÿla .

(c) If E�la, Eÿla , R and G are known, the largest value of (30) is

no longer attained when '� � '�la and/or 'ÿ � 'ÿla. These
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Table 2
Cyanase observed data.

Phase estimates are ranked as a function of m. Numb is the number of
re¯ections with ®gure of merit m > Sog, �' � hj'true ÿ 'bestji is the
corresponding average phase error (the weighted average phase error is in
parentheses).

Sog Numb �' (�)

0.1 57211 66 (62)
0.2 51546 65 (62)
0.3 45073 63 (61)
0.4 38471 61 (60)
0.5 32138 60 (59)
0.6 25284 58 (57)
0.7 17595 56 (56)
0.8 9402 53 (53)
0.9 2113 52 (52)
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values indeed maximize �jE� ÿ E�laj2 � jEÿ ÿ Elaj2� but not

j�E� ÿ E�la� ÿ �Eÿ ÿ Ela�j2. Thus, (30) takes into account the

correlation between E� and Eÿ.

Let us now write (30) as

P�R;G; '�; 'ÿ� � �RG=�e� exp�ÿ�1=e�j�E� ÿ Eÿ�
ÿ �E�la ÿ Eÿla�j2�:

Accordingly, the most probable values of '� and 'ÿ are

those for which �E� ÿ Eÿ� is as close as possible (in the

complex phase) to �E�la ÿ Eÿla�. This result is a sensitive way to

de®ne the maximization condition.

The simplifying assumptions introduced in this section

suggest [by analogy with (27)] that distributions (11) and (13)

are expected to be mostly bimodal.

M. Walsh is kindly acknowledged for having provided us

with a set of experimental data.
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